Welcome to Fantastic Math World

Tuesday, 12 September 2017

Independent and Dependent Events


One of the most important concepts in probability is that of independent events

Two events E and F are independent if the occurrence of event E does not affect the probability of event F.

If the occurrence or non-occurrence of E1 does not affect the probability of occurrence of E2, then
P(E2 | E1) = P(E2)
and E1 and E2 are said to be independent events.
Otherwise they are said to be dependent events.
[Recall from Conditional Probability that the notation P(E2 | E1) means "the probability of the event E2 given that E1 has already occurred".]

Two Events

Let's consider "E1 and E2" as the event that "both E1 and E2 occur".
If E1 and E2 are dependent events, then:
P(E1 and E2) = P(E1) × P(E2 | E1)
If E1 and E2 are independent events, then:
P(E1 and E2) = P(E1) × P(E2)

Three Events

For three dependent events E1E2E3, we have
P(E1 and E2 and E3) = P(E1) × P(E2 | E1) × P(E3 | E1 and E2)
For three independent events E1E2E3, we have
P(E1 and E2 and E3) = P(E1) × P(E2) × P(E3)

Example 1

If the probability that person A will be alive in \displaystyle{20} years is \displaystyle{0.7} and the probability that person B will be alive in \displaystyle{20} years is \displaystyle{0.5}, what is the probability that they will both be alive in \displaystyle{20}
 years?

ANSWER
 These are independent events, so
P(E1 and E2) = P(E1) × P(E2) = 0.7 × 0.5 = 0.35
[Note, however, that if person A knows person B, then they will be dependentevents, especially if A is married to B.]

Example 2

A fair die is tossed twice. Find the probability of getting a \displaystyle{4} or \displaystyle{5} on the first toss and a \displaystyle{1}\displaystyle{2}, or \displaystyle{3} in the second toss.

ANSWER
P(E1) = P(4 or 5) = \displaystyle\frac{2}{{6}}=\frac{1}{{3}}
P(E2) = P(1, 2 or 3) \displaystyle=\frac{3}{{6}}=\frac{1}{{2}}
They are independent events, so
\displaystyle{P}{\left({E}_{{1}}{\quad\text{and}\quad}{E}_{{2}}\right)} \displaystyle={P}{\left({E}_{{1}}\right)}\times{P}{\left({E}_{{2}}\right)} \displaystyle=\frac{1}{{3}}\times\frac{1}{{2}} \displaystyle=\frac{1}{{6}}

Example 3

Two balls are drawn successively without replacement from a box which contains \displaystyle{4}white balls and \displaystyle{3} red balls. Find the probability that
(a) the first ball drawn is white and the second is red;
(b) both balls are red.

ANSWER
(a) The second event is dependent on the first.
P(E1) = P(white) = \displaystyle\frac{4}{{7}}
There are 6 balls left and out of those 6, three of them are red. So the probability that the second one is red is given by:
P(E2 | E1) = P(red) \displaystyle=\frac{3}{{6}}=\frac{1}{{2}}
Dependent events, so
\displaystyle{P}{\left({E}_{{1}}\ \text{and}\ {E}_{{2}}\right)}={P}{\left({E}_{{1}}\right)}\times{P}{\left({E}_{{2}}{|}{E}_{{1}}\right)}=\frac{4}{{7}}\times\frac{1}{{2}}=\frac{2}{{7}}

(b) Also dependent events. Using similar reasoning, but realising there will be 2 red balls on the second draw, we have:
\displaystyle{P}{\left({R}{R}\right)}=\frac{3}{{7}}\times\frac{2}{{6}}=\frac{1}{{7}}

No comments:

Post a Comment