Welcome to Fantastic Math World

Tuesday, 12 September 2017

Mean, Variance and Standard Deviation


Mean and Variance of Binomial Distribution

If p is the probability of success and q is the probability of failure in a binomial trial, then the expected number of successes in n trials (i.e. the mean value of the binomial distribution) is
E(X) = μ = np
The variance of the binomial distribution is
V(X) = σ2 = npq
Note: In a binomial distribution, only 2 parameters, namely n and p, are needed to determine the probability.

Example 1


A die is tossed \displaystyle{3} times. What is the probability of
(a) No fives turning up?
(b) \displaystyle{1} five?
(c) \displaystyle{3} fives?

ANSWER:

 This is a binomial distribution because there are only 
\displaystyle{2} possible outcomes (we get a \displaystyle{5} or we don't).
Now, \displaystyle{n}={3} for each part. Let \displaystyle{X}= number of fives appearing.
(a) Here, x = 0.
\displaystyle{P}{\left({X}={0}\right)} \displaystyle={{C}_{{x}}^{{n}}}{p}^{x}{q}^{{{n}-{x}}} \displaystyle={{C}_{{0}}^{{3}}}{\left(\frac{1}{{6}}\right)}^{0}{\left(\frac{5}{{6}}\right)}^{3} \displaystyle=\frac{125}{{216}} \displaystyle={0.5787}
(b) Here, x = 1.
\displaystyle{P}{\left({X}={1}\right)} \displaystyle={{C}_{{x}}^{{n}}}{p}^{x}{q}^{{{n}-{x}}} \displaystyle={{C}_{{1}}^{{3}}}{\left(\frac{1}{{6}}\right)}^{1}{\left(\frac{5}{{6}}\right)}^{2} \displaystyle=\frac{75}{{216}} \displaystyle={0.34722}
(c) Here, x = 3.
\displaystyle{P}{\left({X}={3}\right)}={{C}_{{x}}^{{n}}}{p}^{x}{q}^{{{n}-{x}}}={{C}_{{3}}^{{3}}}{\left(\frac{1}{{6}}\right)}^{3}{\left(\frac{5}{{6}}\right)}^{0}=\frac{1}{{216}}={4.6296}\times{10}^{ -{{3}}}

No comments:

Post a Comment