Welcome to Fantastic Math World

Tuesday, 12 September 2017

Pythagoras Theorem

For the next trigonometric identities we start with Pythagoras' Theorem:

right angled triangle abc
The Pythagorean Theorem says that, in a right triangle, the square of a plus the square of b is equal to the square of c:
a2 + b2 = c2
Dividing through by c2 gives
a2c2 + b2c2 = c2c2
This can be simplified to:
(ac)2 + (bc)2 = 1
Now, a/c is Opposite / Hypotenuse, which is sin(θ)
And b/c is Adjacent / Hypotenuse, which is cos(θ)
So (a/c)2 + (b/c)2 = 1 can also be written:
sin2 θ + cos2 θ = 1
Note:
  • sin2 θ means to find the sine of θ, then square the result, and
  • sin θ2 means to square θ, then do the sine function

Example: 32°

Using 4 decimal places only:
  • sin(32°) = 0.5299...
  • cos(32°) = 0.8480...
Now let's calculate sinθ + cos2 θ:
0.52992 + 0.84802
= 0.2808... + 0.7191...
0.9999...
We get very close to 1 using only 4 decimal places. Try it on your calculator, you might get better results!

No comments:

Post a Comment